
Chapter 6

Sequential Monte Carlo algorithms

So far we have been concerned with DLMs, dynamic linear models, however other models are possible
and in fact most real systems are not linear and Gaussian. In some cases, a DLM is good-enough an
approximation to be useful, especially given that it is closed form and easily computed. Yet, in many
other cases, it is mandatory to introduce non-linear and non-Gaussian models in order to make useful
forecasts. Recall that we initially introduced general evolution and observation equations of the form

θk = fk(θk−1,uk)

yk = hk(θk,vk),

for a sequence of random variables (θk)k≥0 with the Markov property.

Example 6.1. The stochastic volatility model is a very common non-linear model used in mathematical
finance. If θk is the log-volatility of the return of a financial asset at time k then

θ0 ∼ N
�
· ;µ, 1

1− φ2
1

�

θk = µ+ φ1(θk−1 − µ) + uk, k ≥ 1

yk = vk exp
�1
2
θk

�
, k ≥ 0

with uk ∼ N(· ; 0,β2) and vk ∼ N(· ; 0, 1) and with µ, φ1 and β > 0 some given scalar parameters. The
state equation is simply an AR(1) process but the relation between the state and the observation is
clearly non-linear. In particular, it is the variance of the observation noise that is related to the state.
The reason for considering the log-volatility θk instead of the volatility itself, say ξk, is to ensure that
the posterior distribution does not suggest non-positive volatilities (which do not make sense). Indeed,
even if the posterior distribution of θk is supported by the whole real line, the corresponding distribution
of ξk = exp(θk) will be supported by (0,∞).

For simplicity, we can consider that the noise sequences (uk)k≥0 and (vk)k≥0 are additive in the
model, that is

θk = f̃k(θk−1) + uk

yk = h̃k(θk) + vk,

for some arbitrary functions f̃k and h̃k which are not linear in general. In this situation, even if θk−1,
uk and vk where Gaussian, the predicted and posterior distributions would be non-Gaussian in general.
However, it is straightforward to determine the transition and likelihood functions: for instance, if
uk ∼ N(· ; 0,Uk) and vk ∼ N(· ; 0,Vk), then

qk(θ | θ�) = N(θ; f̃k(θ
�),Uk) and �k(yk | θ) = N(yk; h̃k(θ),Vk).
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Figure 6.1: Approximation of the uncertainty associated with the observation from a camera by a
Gaussian in the 2-dimensional Cartesian plane.

Example 6.2. If θk = (x1,x2)
� is the position of an object in the 2-dimensional Cartesian plane and if

this object is observed by a camera placed at the origin, then the observation function is

h̃k(x1,x2) = arctan
x2

x1

which is obviously non-linear.

There exist approximations that allow for considering non-linear evolution and observation functions
while representing the predicted and posterior distributions by Gaussian distributions, but these ap-
proaches will only allow for tackling mildly non-linear functions and will not preserve the theoretical
properties of the Kalman filter. The two most popular methods of this kind are the extended Kalman
filter (EKF) which relies on a linearisation of the evolution and observation functions and the unscented
Kalman filter (UKF) which relies on the empirical covariance computed from a deterministic set of points.
For instance, in the scenario considered in Example 6.2, linearising the observation function will not be
a good approximation in general, as illustrated in Figure 6.1.

Another large set of techniques is gathered under the name Monte Carlo methods. For a given target
distribution π(·) on the space Θ, the simplest approach would be to introduce i.i.d. random variables
θ(i) ∼ π(·), i ∈ {1, . . . ,N}, in which case integrals with respect to π(·) of the form

I(ϕ) =

�
ϕ(θ)π(θ) dθ

can be approximated, for any given integrable function ϕ(·), by

Î(ϕ) =
1

N

N�

i=1

ϕ(θ(i)).

For instance, if π(·) is the posterior distribution of the state θk given the observations y0, . . . , yk then I(ϕ)
is equal to the posterior mean E(θ |y0:k) when ϕ(θ) = θ and to the second posterior moment E(θ2 |y0:k)
when ϕ(θ) = θ2, from which the posterior variance can be recovered.

Note that Î(ϕ) is a random variable so that expectations can be taken:

E(Î(ϕ)) =
1

N

N�

i=1

E(ϕ(θ(i))) =
1

N

N�

i=1

�
ϕ(θ)π(θ) dθ = I(ϕ)

var(Î(ϕ)) =
1

N

��
ϕ(θ)2π(θ) dθ − I(ϕ)2

�

This is the basic Monte Carlo approach. However it is rarely the case that we can sample directly from
the target distribution π(·), so that alternative methods have to be introduced.

6.1 Importance sampling

If it is not possible to sample directly from the target distribution π(·) but if we can evaluate π(·) at any
point and if a proposal distribution s(·) is available such that it is simple to sample from s(·), then we
can rewrite I(ϕ) as

I(ϕ) =

�
ϕ(θ)

π(θ)

s(θ)
s(θ) dθ.
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This expression of I(ϕ) suggest a different way of approximating this quantity, as described in Algo-
rithm 1. In this method, called importance sampling, the weights w(θ(i)), i ∈ {1, . . . ,N}, are referred to
as importance weights. The only assumption is that ϕ(θ)π(θ) > 0 implies s(θ) > 0 for any θ ∈ Θ. This
assumption has to be phrased more restrictively as “π(θ) > 0 implies s(θ) > 0” if we want the algorithm
to be valid for any function ϕ.

Algorithm 1 Importance sampling

1: for i = 1, . . . ,N do
2: θ(i) ∼ s(·)
3: end for
4: Output:

Î(ϕ) =
1

N

N�

i=1

ϕ(θ(i))w(θ(i))

5: with w(θ) = π(θ)/s(θ)

As in the basic Monte Carlo approach, we can compute the mean and variance of Î(ϕ) as

E(Î(ϕ)) =
1

N

N�

i=1

E(ϕ(θ(i))w(θ(i))) =
1

N

N�

i=1

�
ϕ(θ)π(θ) dθ = I(ϕ)

var(Î(ϕ)) =
1

N

��
ϕ(θ)2

π(θ)2

s(θ)
dθ − I(ϕ)2

�
,

from which we conclude that the estimate Î(ϕ) is unbiased. There is however a clear limitation with
importance sampling since one has to be able to evaluate the target density π(·) at any point θ ∈ Θ

in order to obtain the corresponding estimate Î(ϕ). In particular, expressing the target density as
π(θ) = γ(θ)/Z with γ a density function on Θ (not normalised) and Z a normalising constant, it is
extremely common that the constant Z is unknown. In this case, one can instead use the self-normalised
importance sampling described in Algorithm 2.

Algorithm 2 Self-normalised importance sampling

1: for i = 1, . . . ,N do
2: θ(i) ∼ s(·)
3: end for
4: Output:

1
�N

j=1 w̃(θ
(j))

N�

i=1

ϕ(θ(i))w̃(θ(i))

5: with w̃(θ) = γ(θ)/s(θ)

There is indeed no need to know the value of Z in Algorithm 2 and we can even obtain an estimate
of it as 1

N

�N
i=1 w̃(θ

(i)); in fact, Algorithm 2 can be seen as a version of Algorithm 1 where Z has been
replaced by its estimate. However, the corresponding estimate of I(ϕ) is now biased (but consistent).

6.2 Sequential importance sampling

Considering the case where the target distribution is the smoothing distribution at time n, that is

πn(θ0:n) =
γn(θ0:n)

Zn

with

γn(θ0:n) = p0(θ0)�0(y0 | θ0)
n�

k=1

qk(θk | θk−1)�k(yk | θk)
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and with Zn the corresponding normalising constant. The self-normalising importance sampling al-
gorithm can be used in principle with this type of target distribution, for instance with the proposal
distribution

sn(θ0:n) = p0(θ0)

n�

k=1

qk(θk | θk−1)

which is usually easy to sample from and which yields the importance weight

w̃n(θ0:n) =

n�

k=0

�k(yk | θk).

If the weights are computed recursively in time, it is easy to see that

w̃n(θ0:n) = w̃n−1(θ0:n−1)�n(yn | θn).

Other proposal distributions are possible, but, for the sake of simplicity, we will always assume that

sn(θ0:n) = s0(θ0)
n�

k=1

sk(θk | θk−1).

See Algorithm 3 for the corresponding calculations. However, simply following the evolution of the
process without taking into account the observations is unlikely to yield samples with a non-negligible
importance weight so that a large number of samples would be required, especially when n is large.
This is particularly the case if the evolution model is uninformative (i.e. large evolution noise) and if the
observations are very informative (i.e. small observation noise).

Algorithm 3 Sequential importance sampling

1: for i = 1, . . . ,N do

2: Sample θ
(i)
0 ∼ s0(·)

3: Define the importance weight

w
(i)
0 =

p0(θ
(i)
0 )�0(y0 |θ(i)

0 )

s0(θ
(i)
0 )

4: end for
5: for k = 1, . . . ,n do
6: for i = 1, . . . ,N do

7: Sample θ
(i)
k |θ(i)

k−1 ∼ sk(· |θ(i)
k−1)

8: Define the importance weight

w
(i)
k = w

(i)
k−1

qk(θ
(i)
k |θ(i)

k−1)�k(yk |θ
(i)
k )

sk(θ
(i)
k |θ(i)

k−1)

9: end for
10: end for
11: Output:

În(ϕ) =
1

�N
j=1 w

(j)
n

N�

i=1

w(i)
n ϕ(θ(i)

n )

12: and Ẑn = 1
N

�N
i=1 w

(i)
n

6.3 Resampling

In order to address the limitations of importance sampling for state-space models, one of the most popular
technique is to add a step in which the samples with high weight are duplicated and the ones with low
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weights are deleted. This is called the resampling step, also known as the interaction or selection step.
To be consistent with the literature, we will henceforth refer to the samples as particles and we will
directly approximate the target distribution πn(·) by an empirical distribution

π̂n(θ) =
1

�N
j=1 w

(j)
n

N�

i=1

w(i)
n δ

θ
(i)
n
(θ)

with θ
(i)
n the particles at time step n and w

(i)
n their respective weights and with δθ(·) the Dirac function

at point θ ∈ Θ. This is equivalent to estimating I(ϕ) as before since

�
ϕ(θ)π̂n(θ) dθ =

1
�N

j=1 w
(j)
n

N�

i=1

w(i)
n ϕ(θ(i)

n ) = Î(ϕ).

As mentioned before, the empirical distribution π̂n(·) might be degenerate, that is the weights w
(i)
n

might have negligible values, so that Î(ϕ) might be inaccurate. To address this issue, we consider a new
collection of particles θ̃(i), i ∈ {1, . . . ,N}, defined as duplicates of the existing particles and such that
the empirical distribution

π̃n(θ) =
1

N

N�

i=1

δ
θ̃
(i)
n
(θ)

remains an estimate of πn(·) with adequate properties. Two alternative ways to write this are

π̂n(θ) =
1

N

N�

i=1

o(i)
n δ

θ
(i)
n
(θ) =

1

N

N�

i=1

δ
θ
(a

(i)
n )

n

(θ)

where o
(i)
n and a

(i)
n are respectively the number of offsprings of particle θ

(i)
n and the ancestor index for the

new collection of particles. For the empirical distribution to have adequate properties, the resampling
step should verify the following unbiasedness condition:

E
�
o(i) |w(1:N)

n = w(1:N)
n

�
= N

w
(i)
n�N

j=1 w
(j)
n

.

A sufficient condition for this is

P
�
a(i)
n = k |w(1:N)

n = w(1:N)
n

�
=

w
(k)
n�N

j=1 w
(j)
n

.

We can verify that expectations with respect to π̂n(·) and π̃n(·) are identical under the unbiasedness con-
dition. The corresponding method, referred to as the bootstrap particle filter, is detailed in Algorithm 4,
where a ∼ C(·; p1, . . . , pN ) refers to the categorical distribution, that is such that P(a = i) = pi.

Note that there are many other resampling procedures, which often aim at reducing the variance. It
is also possible to sample from a proposal distribution instead of sampling from the transition density;
this can be especially useful when the transition noise is large and/or the observation noise is small.
For instance, the normal distribution given by a non-linear version of the Kalman filter can be used
as a proposal distribution. An illustration of the bootstrap particle filter is given in Figure 6.2 on a
linear-Gaussian model.
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Algorithm 4 Bootstrap particle filter

1: for i = 1, . . . ,N do

2: Sample θ
(i)
0 ∼ p0(·)

3: Define the importance weight w
(i)
0 = �0(y0 |θ(i)

0 )
4: end for
5: for k = 1, . . . ,n do
6: for i = 1, . . . ,N do
7: Sample the ancestor index

a
(i)
k−1 |w

(1:N)
k−1 ∼ C

�
·; w

(1)
n�N

j=1 w
(j)
n

, . . . ,
w

(N)
n�N

j=1 w
(j)
n

�

8: Sample θ
(i)
k |θ(a

(i)
k−1)

k−1 ∼ qk
�
· |θ(a

(i)
k−1)

k−1

�

9: Define the importance weight w
(i)
k = �k(yk |θ(i)

k )
10: end for
11: end for
12: Output:

π̂n(θ) =
1

�N
j=1 w

(j)
n

N�

i=1

w(i)
n ϕ(θ(i)

n )

13: and Ẑn =
�N

k=0

�
1
N

�N
i=1 w

(i)
n

�

Figure 6.2: Particle filter on a linear-Gaussian model. The size of the red circles representing the particles
is dependent on their weight.
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